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THE INTERFACE CRACK IN ANISOTROPIC BODIES. 
STRESS SINGULARITIES AND INVARIANT INTEGRALS f 

S. A.  N A Z A R O V  

St Petersburg 

(Received 16 October 1996) 

For the problem of the deformation of a composite anisotropic plate with a crack (in a linear formulation, with no assumption 
of symmetry), all possible power solutions are listed and general relations between the ordinary and singular solutions are revealed. 
The asymptotic form of the increment of the potential energy of deformation is computed for the cases of the rectilinear 
propagation of the crack, deviation of a shoot or branching. The form obtained for the final formula is the same as the classical 
version of the Griffiths formula and involves two invariant integrals. Two methods of determining the modes of radical singularities 
of the stress-strain state near the crack tip, associated with the use of force and energy criteria, are proposed. © 1998 Elsevier 
Science Ltd. All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

z Let the lower and upper half-planes Re be filled with homogeneous anisotropic, generally sEeaking 
different, materials and meet  along the ray A+; here A~: {x = (Xl, x2) e RE: x2 = 0, +xl  > 0}, R~ = {x: 
+x2 > 0}. As we know, for many purposes it is sufficient to study the power solutions (PS) 

U(x) = rA q , ha r) (1.1) 

of the corresponding homogeneous equations of equilibrium in R z, the boundary conditions on A_ and 
the interface (contact) conditions on A+. In (1.1) (r, (p) are polar coordinates on R2~c_ and r = Ix l, 
(p ~ (-n, n); ~, ~ C, l ~-) O((p, l) are vector polynomials. We emphasize that u is a three-dimensional 
vector; the spatial problem is not assumed to split into independent plane and antiplane problems. 

• • + + e + We first introduce the necessary notation. By u-  = (ui, u2, u~) we mean the displacement vector in 
2 +" R~; ~ ts the warping. We denote the stress tensors by o'~(u ±) = (O~jk(U±)), where j, k = 1, 2, 3. Furthermore, 

8p = O/~Xp and Le(v)u  e, N±(V)u e are vectors, with projections onto the xy axis of the form 

-+ • ± • o~j(u ±) (1.2) -Otols(u ) -  ~zcr2s(u ), 

In a Cartesian representation L±(V) and Ar~(v) are 3 × 3 matrix differential operators of  second and 
first orders. Finally, e(u) is a stress tensor with components ejk(u) and, if D~ C R~, then E~(u -+, u±; D~_) 
is the elastic energy stored by the body fL__ under deformation e(u-), that is 

/r (ue ' [ 3 
Z ejk(U+)~jk(Ue)  d x  = E+-( II +,u+-;~"~e) 

2 ~ ).k=l 
(1.3) 

E(u,u ;f~) = E+(u +, u +;~nR~)+ E-(u- ,  u - ;~nR2) 

Thus, the PS (1.1) satisfies the relations 

(1.4) 

U(V)Ue(x )  = O, x ~ R~ (a.s) 

• N~(V)U+-(x) = O, x e A_ (1.6) 

U+(x) = U-(x),  N+(V)U+(x) = N-(V)U-(x) ,  x e A+ (1.7) 

The contraction of  U onto R~ is denoted by U ~, and the traced U ~ at x2 = 0 is taken as the limit as 
Xe ---> + 0. For any sufficiently smooth vector functions u and ~ we have the Betti identity 
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[uLudx+ ~ uo(V)(u)ds+ ]o(N+u+-N-u-)dxz =2E(u,u;g2) (1.8) 

Here f~ is the subdomain R2kA__, dsj~ anAleme.nt of length of the arc, v = (vl, v2) is the unit vector of 
the outward normal, and t~ (v) = (6~v), 62tv~, aatv)). Moreover 

L(V)u(x) = L±(V)u±(x), x ~ ~ - f~c~R~ (1.9) 

= v2(x)o 2(u± ;x) 
x ~ (3fl)+ - {x e ~ : +x2 >~ 0} 

Problem (I .5)-(1.7) is linear, that is, contact between the sides is ignored even in the case where there 
are oscillating singularities corresponding to complex ~, in (I.I), and non-linear contact conditions are 
required in order to remove any overlapping of the sides (see [1-3], etc.). Nevertheless, thanks to the 
results in [4--6], which localize non-linear effects, the problem is well understood and there have been 
a large number of papers concerning the investigation of singularities of its solutions ([4--19], etc.). In 
the main, problem (1.5)-(1.7) has been split into a plane and an antiplane problem and d/rect analytic 
computations have been performed. In this paper we use the approach of [20] (see also [21, Ch. 7]), 
which is valid for general self-conjugate systems with piecewise-constant coefficients and helps to avoid 
routine computations. 

2. D I F F E R E N T I A T I O N  A L O N G  T H E  C R A C K  

We will first give some known facts from the theory of elliptic problems in regions with corner (conical) 
points ([22-24] and [21, 25, Ch. 3]). The number X in (1.1) is characteristic for the problem on the arc 
(-It, 7t), obtained by substituting the vector r"~(tp) into (1.5)-(1.7). We will use the symbolA(L) for the 
operator of this problem for brevity. The abstract function X,--->A(L) (bundle) is quadratic. The Jordan 
chain (JC) ~F °, . . . ,  ~I : -1  of length ~, corresponding to the characteristic value (CV) L. of bundle A 
consists of the eigenvector W tr and adjoint vectors W 1 . . . . .  ~F ~-1, which are found from the 
problems 

k 1 .4p~ ~ _  " 6  ~ k - p  A(X,)W t ~ (X.)~F , k = 0 ..... ~ -  1 
p=l p[ dXP 

(2.1) 

Each JC corresponds to the set of PS 

k 1 
Vk(x) --- r ~'' ~', - - ( l n r ) P W k - P ( c p ) ,  k = 0  ..... X - 1  (2.2) 

p;; p! 

Any PS (1.1) can be represented in the form (2.2), where q~o, . . . ,  ,pk is a JC corresponding to the 
CV ~,. 

We denote by E the spectrum of the bundle A or, in other words, the set of indices in non-trivial PS 
(1.1) of problem (1.5)-(1.7). In view of the fact that the coefficients of the operators L + and N ~ are real 

( 2 . 3 )  

The bar denotes the complex conjugate. Problem (1.5)-(1.7) is formally self-conjugate, that is, according 
to [25], Section 5.5 and [21, Section 6.1], we have 

X G Y ~ - ~  ~ ~ (2.4) 

The coefficients of the operators are constant and the vector 3IU, obtained by differentiating (1.1) 
with respect toxl, also satisfies (1.5)--(1.7). S!nce tp ~ ~({p, In r), which is a smooth function for tp ~ 0, 
equality to alU is possible if, and only if, U~(x) = xk2 a~'. It can be verified by direct computation that 
Eq. (1.5) is not satisfied when k ~> 2, and condition (1.6) does not hold when k = 1. There is still the 
obvious possibility: U ~ = a - - a  rigid shift. Thus 

0E Y.; ~,~ g \ 0 = , g - l e  I: (2.5) 
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3. T H E  P O L Y N O M I A L  P R O P E R T Y  OF T H E  E N E R G Y  F U N C T I O N A L  

For form (1.3) we have the inequality 

( 3 ,  

The strain tensor and, therefore, the left-hand side of (3.1), degenerates only on rigid shifts (cx - c0rz, 
c2 + C0rx). This is the polynomial property of  the quadratic form (1.4) ([25, Section 5.1] and [21, Sections 
5.4 and 6.1]); it gives much useful information concerning problem (1.5)-(1.7). Thus, by Theorem 5.5;2 
of  [25] or 6.1.2 of  [21] the CV L = 0 corresponds to the three eigenvectors (EV) 

~l ,0  = e  I = (1 ,0 ,0 ) ,  ~2.0 = e  2 =(0 ,1 ,0 ) ,  ~3,0 = e  3 = ( 0 , 0 , 1 )  (3.2) 

For each of these there is an adjoint 4¢ '1. There is no JC of length greater than two, and no other CV 
on the imaginary axis iR = {X e C: Re 7t = 0}. The PS ~,1 found for ~ ,0  and •/ '1 with the help of  
(2.2), correspond to forces concentrated at the tip x = 0 of the crack A_. 

Operators with smooth coefficients were analysed in [25, 21], whereas the coefficients of  the operator 
L(V) have a discontinuity on A+. This does not affect the proof  of the statements made, since the 
interface conditions (1.7) are worked out exactly the same way as boundary conditions (1.6). 

From the above, it can be concluded that, for integer m, there is only one CV X = m on the straight 
line m + tqR = {X ~ C: Re L = m}, that is 

Z c Z ,  R e Z = m ~ Z : = ~ , = m  (3.3) 

It will he proved in Section 5 that the CV ~, = rn e ~ 0  corresl~o, nd to exactly three linearly independent 
0 0 1 0 1 PS (for m = 0 there are six l, a' = ~ '  and I n' = (I~' In r + ~ '  ; j  = 1, 2, 3#. It can be verified that any 

PS generated by the CV X = m < 0 is a combination of  derivatives ~9'~1 l, a' , and the power series with 
index L = m > 0 is a vector polynomial. 

4. B I O R T H O G O N A L I T Y  C O N D I T I O N S  

We will now show that, apart from integer points, the spectrum lies only on straight lines iR + n + 
1/2, where n e Z. By virtue of  (2.5) and (2.3), it is sufficient to establish that the strips 110 = {~, e C: 
0 < Re ~, < 1/2} and II i = {~, e C: 1/2 < Re ~, < 1} are free from the spectrum. To verify this, we need 
information of  a general kind ([2, 3]), as well as [25, 21, Section 3.5]). We know that for any (non-trivial!) 
PS 

U(x) = r ~ ~ ~l. (In r)P~s-POp ) 
pffiO 

(4.1) 

there is a power series l,m(x) of the form (2.2) with L. = -;L- such that 

Q(u, v";r)-= ]~V"(x)o(~)fU;x)-Ufx)aO')fv.;x)},i, = i 
v 

(4.2) 

In addition to (4.2), for the other PS of (2.2) we have 

Q(U, Vk;F)=O, k=O ..... n - l , n +  I ..... x - I  (4.3) 

and in the case s = 0, x > 1 necessarily n > 0. In (4.2) and (4.3) F is any piecewise-smooth path joining 
the opposite sides of  the cut A__ and not intersecting itself. Finally, if U and Vsatisfy (1.5)-(1.7) near 
F, then ([20] and [21, Lemma 7.4.4]) 

QO~U, v; 13 =-Q(U, ~v; 13 (4.4) 

Let the CV X be in the strip 11 o (or in 1-I1). We take the corresponding PS (4.1). The derivative 
OtU is also a non-trivial PS and is generated by the CV 7~ - 1. We seek one more PS with respect to 
OlU 

V(x) = rl-2Y(~, In r) (4.5) 
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subject to the condition (cf. (4.2) and (4.4)) 

1 = Q(alU, V; D = Q(~I V, U; D (4.6) 

where the CV 1 - ~,lies in I-I 1 (or in II0) and, therefore, U ~ V. Thus, we have constructed two pairs 
of power series aaU, V and 31V, U, related by the biorthogonality conditions (4.6). 

In Section 8, when considering the lengthening of the erack by an amount h, we will see the following: 
if, in the initial position of the crack, the solution is identical with the sum 

cvU(x) + cvV(x) (cv, cv E R) (4.7) 

then the increment of potential energy AU satisfies the relation 

AU = -.hcoc v + o(h) (4.8) 

It is important that only three conditions need to be satisfied in order to derive (4.8): relation (4.6), 
the inequality U s  Vand the inclusion Re X ~ (0, 1). 

According to (4.8), the increment AU can be given any sign depending on the choice of cv  and cv in  
(4.7). At the same time, AU ~< 0, since the solution of the problem gives a minimum of the energy 
functional, and as the crack grows, the functional space on which the minimum is sought expands. The 
resulting discrepancy contradicts the assumption made, and thus 

~ n  r ~ = ~ n  rl~--~ (4.9) 

A similar argument can be used to check that the CF is algebraically simple. Let Re X = 1/2, 
U(x) = rZ~(tp), but × > 1, that is, let there be a PS with a logarithm. Then OlU(x) = rZ-lO(tp) and, 
therefore, in the PS (4.5), biorthogonal to 0xU, 1 - X = X and Y is a polynomial of non-zero degree 
(see the comments concerning (4.3)). Thus, U ~ V, as required. 

We will show that the total (total algebraic) multiplicity of the CV on each of the straight lines iR + 
l/2, where l ~ Z, l ~ 0, is three (we recall that ~, = 0 has multiplicity 6). Thus we will fill up the gap in 
the proof of Section 3 and, furthermore, by virtue of (2.3)-(2.5), we have 

E =  {n,n  + l/2, + i"t+ n + ll2: n E  Z} (4.10) 

where T ~> 0. As usual, it is sufficient to confine ourselves to considering the straight lines iR + 1/2 and 
i R +  1. 

If the half-planes R 2 are filled with the same isotropic material, we know that X = 1/2 and X = 1 are 
triple CV, and the PS for X = 1/2 generate radical singularities of stresses of three modes. When X = 
1 the PS correspond to a rotation about the axisx3 = 0 and two single-axis loadings parallel to the crack 
(plane and antiplane problems). 

By a continuous change of the elastic moduli, one can change from an isotropic to any homogeneous 
anisotropic plane with a cut and then, by varying the moduli only in the lower half-plane, to problem 
(1.5)--(1.7). Since the full algebraic multiplicity of the CV is presented during a completely continuous 
perturbation of the bundle (the exact formulation of the theorem is given in [26, Section 1.3]) and as 
proved above, the CV cannot leave their straight lines or go to infinity (the given transformation is 
parametricized by points t ~ [to, tl]), if the bundleA occurring (2.1) is given an exact meaning, the above 
assertion can be stated as a theorem. 

We recall the generalized formulation of the problem in region f~ (see Fig. 1) 

~ n 

Fig. 1. 
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L(V) u-~(x) = F(x), x ~ t2+ u fl.. (4.11) 

otV)(u; x) = G(x), x a (at2)+ u (0t2)_ (4.12) 

u+(x) =u-(x), N+(V)u+(x)- N-(V)u-(x) = H(x), x~ A_ r~fl (4.13) 

By a generalized solution, we mean an element u of the Sobolev space W~(f~) 3 which satisfies the integral identity 

2E(u'u;t2)=~ (fOu + ~ ft~tu)dx+ I guda+ I hudxl, ~'u ~W~(t2) 3 (4.14) 
f] k=! ~ A_ n~ 

2 2 
F=f O- ~ ~kf  t ,  O=g+~nkf t, H=h+f2-- f  2+ 

k=l k=l 

fq±EL2(t2±), gc~L2(~kr~), hEL2(A+r~f/) 

The generalized formulation of the problem is transferred in the usual way to the bundle ~, ~-*A(Z) with domain 
of definition W~(-g, g)3 (for details, see [21-25], for example). The next bundle possesses the same CV and JC 

1 + BO,) = 1 + a0-0  ) -t (a(7,) - A0.0 )): W2 l (-x,  ~)3 + W~ ( -z ,  ~)3 (4.15) 

In (4.15) I is the identity operator, ~0 e C~ (for example, Z0 = 1/4 ~ rio), and B 0.) is an entirely continuous operator 
on ~2(-~, 7t) 3 (since the coefficients of the highest derivatives in the system of equations on (-~, x) in the boundary 
conditions and in the conjugation conditions are independent of g and, therefore, disappear in the differenceA(g) 
-A(go)). In fact, B undergoes changes on changing from an isotropic to a composite plate. 

5. T H E  E S H E L B Y - C H E R E P A N O V - R I C E  I N T E G R A L  A N D  S P L I T T I N G  
O F  T H E  S T R E S S - S T R A I N  S T A T E  I N T O  M O D E S  

In the crack theory wide use is made of the invariant integral (independent of the path) [27-29] 

J(u; I') = J {W(u, ~; x) cos(v, x~)- ~,u(x). o (v)(u; x) } ds (5.1) 
I" 

Here cos(v, xi) is the direction cosines of the outward normal v to the arc F, and W* are the densities 
of elastic energies E ~. Provided that F, G and H are equal to zero near F, the solution u of problem 
(4.11)--(4.13) satisfies the equation ([20 and 21, Section 7.3]) 

J(u; ID = Z'IQ(~)lu, u; ID (5.2) 

Formula (5.2) can be used to evaluate the integral (5.1). Let ~ denote a subdomain of fl whlch contains 
the arc F and the set which it bounds (it is completed by segments of the crack sides). Suppose that 

F(x) = 0, x~ .=..; G(x) =0, xe ~ :~ b=.; H(x) =0, x~ A+n~ (5.3) 

The solution u ~ W~2(Q) 3 of problem (4.11)--(4.13) is given by the formula 

u(x) = c+ Z K®ri~°+~@®(q)) + O(r) (5.4) 
==0,+ 

Here K0, K~ are the stress intensity factors (SIF), 4) °, 4) ± are the EV corresponding to the CV I/2, 
_+ i7 + I/2 and 

U'(x) = r~V'4,'(q)) (x=0,+) (5.5) 

Since J(u; F) = J(u - c; F), it can be assumed in (5.4) that c = 0. Contracting the contour F to the tip, 
we get rid of the residue O(r). Thus, using (4.4) and (4.2) we have 

2 ~,x=0,± 
(5.6) 
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M~ = Q(~U ", U~;I ") = -Q(U~,~U";F) = M,x (5.7) 

The matrix M is symmetric and positive definite (el. (5.7) and [20] and [21, Section 7.4]). 
Apart from (4.2) and (4.3), there is another property of the PS that should be pointed out [25 and 

21, Sections 3.2.1 and 3.5.4]: if U and Vcorrespond to the EV ~. and L2, but L2 - kl, then 

Q(U, V; I") = 0 (5.8) 

Thus, M is a diagonal real matrix when y ~ 0. Also, ~± can be taken as complex conjugates, and we 
have M+ + = M_. We will put 

U I =2-)~(U++U-),  U 2 =i2-~J(U + - U - ) ,  U 3 =U ° 

KI=2-~(K++K_), g2=-i2-k~(g+-K_), K3=K ° (5.9) 

Now U / are real and K; ~ R for real F, G and H (we have removed the complex SIF; cf. [ii, 13]). 
Moreover, by virtue of (51.8), (5.7) and (5.9) 

mp = Q(~I UP, Ul'; F) = 2 -i [Q(OlU+, U+;F)  + Q(~IU-, U- ;  F)] = 

= 2-1(M++ +M__) = M++ > 0 (p = 1,2) (5.10) 

Q(blut,u2;r)=Q(Olu2,ul;F)=O, m3. =Moo >0 

Thus, formulae (5.4) and (5.6) in the notation (5.9) take the form 

3 
u(x) = c + Y. KjU/(x) + O(r) (5.11) 

1=1 

1 3 
s(u ; r )  = -  Y mjK 2 (5.12) 

2j=l  

Each basis in the lineal L1/2 of the PS with indices Re k = 1/2 is accompanied by its own splitting of 
a radical singularity of the stressed state into modes and, therefore, .by its own SIF vectors and matrix 
M. When y~  0 the basis, complex {U +, U-, U °} or real {U s, U 2, U3}, is defined in (5.5) and (5.9) is 
fully single-valued. When y = 0 all the PS of L1/2 are generated by the same CV ~, = 1/2 and it is therefore 
impossible to define a canonical basis when operating only with the bundle A. 

We will now show how to adjust the choice of bases to force or energy criteria of fracture. 
Let y = 0 and {U/} be any basis in Ls/2. We form a numerical 3 x 3 matrix E with elements 

| • . 

Zk) = 2 -I r ~ {(l~t (U J ; r, +O) + (Y2k ( UJ ; r,--O) } (5.13) 

The matrix Z is non-singular. For let Z b = 0 for some column b. The PS U = b/U / (with index 
~, = 1/2) satisfies (1.5) on {x: Xz = 0} and (1.6) on R 2 (since according to (1.2) and (5.13), (1.7)N~(V) 
U(x) R-~2Z b = 0 forx e A+). At the same time, all the PS of the problem in the half-plane have integer 
indices ([30, Section 2] and [21, Section 6.4]) and therefore U = 0 and b = 0, that is, det Z ~ 0. 

We will denote the elements of the matrix inverse to ~, L -s, by (L'-s)~, and introduce a new basis {U ~} 
in Lv2 by the equations 

U0p = (2~)-~ {(Z-i ),pUi +(y-n )2pU 2 + (~-1)3pU3 } 

The only difference between the matrix x ° - ~, found with respect to this basis, and the identity matrix 
is the presence of the factor (2n) -1. Thus, by rewriting series (5.11) we obtain the classical definition 
of the SIF 

3 
U(X) = C+ ~., KopUOP(x)+ O(r) (5.14) 

p=l 
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02p(u;r,O)=2-!{o~p(u;r,+O)+o~p(u;r,--O)}=(21¢r)-~Kot, +O(I), r-->+O (5.15) 

Since the s t r e s s e s  r-1/2]~kj appeared in the normalization conditions on the continuation of the crack, 
the force criterion must be used for choosing the basis {UOP}. 

Relation (5.6), transformed using (5.14), takes the form 

3 _ 1  - 0 J(u;r')-.;. Z KqMqpKp 
q,p=l 

(5.16) 

Let  S be a unitary 3 x 3 matrix which reduces the matrix M ° = (A~)  to diagonal form (its CV are 
m j > 0 )  

SM°S -1 = diaglml, m2, m3} 

We will construct a new basis with respect to S and {U q°} 

UJ=Sj, U Ol +$~2U°2+$j~U °3 ( j=  1,2,3)  

(5.17) 

(5.18) 

Formulae (5.14) and (5.16) take the form (5.11) and (5.12). The relation between the new SIF Kj and 
(K~xis again given by (5.18) and in view of the fact that S is unitary, the moduli of  the SIF vectors K = 

, K2, K3) t and K0 = (/(10,/(20, K30) t are equal (t denotes the transpose). Furthermore,  for quantities 
(5.13) calculated with respect to the basis (5.18), by virtue of (5.15) we have 

(5.19) I%12 + Iz=jl 2 . I ,jl= = 2= 

In Section 7, expression (5.12) will be interpreted as the increment of potential energy, that is, the 
basis (5.18) is associated with the energy criterion of fracture. If the CV ml, m2 and m 3 differ, S and 
{U/} are single-valued. But if, fo r  example, m 1 = me ~ m3, S is defined to within a unitary multiplier, 
leaving the EV of  the matrix M" corresponding to its CV m 3 unchanged. This arbitrariness in the choice 
of the "energy" basis of  other considerations. Thus, for a homogeneous isotropic plate m 1 = m 2 = 
I.t-l(1 - v) and m 3 = It -1, where Ix and v are the shear modulus and Poisson's ratio, and the "force" and 
"energy" bases are the same. 

I fy~  0 in (4.10), then by (5.10) ml = m2, and thus we have the two bases (5.5) and (5.9); these are related by 
a unitary transformation and, bearing in mind formula (5.12), are equivalent. 

We will show what happens to the representation (5.11) when there is a change of scale. Let h > 0 be a 
dimensionless parameter and 

(~! ,~2 ) = P~ = h-Ix = (h-!x! ,h-Ix2) (5.20) 

The replacement x ~ ~ is accompanied by transformation of the 3 x 3 matrix U(x), containing columns U)(x) of (5.10) 

3 
~'. K jUJ (x) = U(x) K = U(hI~)K = h~U(I~)O-J K (5.21) 
j=l 

0 = c s = s i n [ T i n  h ]  

0 

(5.22) 

If the basis {h-lUJ(g)} is used, the new SIF vector takes the form hlaO-1K. However, in the usual situation 
• -1/2 T = 0 the rescaling.of the SIF reduces to multiplication by h ; to preserve this rule, we need to take the columns 

of the matrix h-JUJ(~) 0 -1 as the basis. This transformation is admissible in the energy approach (since ml = m2, 
the matrices m = diag {In 1, m 2, m 3} and 0 -1 commute, and there is no change in the form of formula (5.12)). The 
classical definition of the SIF (the force approach) in the case y~ 0 is discussed in [6], where the need to introduce 
an additional structural parameter rs which fixes the scale is indicated. A similar parameter is needed in definition 
(5.9): U ) must be so chosen that the quantities 

Z~, = r~  1o~, (U) ;r s, +0) + oF, (U j ;rs,-O)} (5.23) 
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satisfy (5.19). When y = 0 the right-hand side of (5.23) is independent of rs, and formulae (5.23) and (5.13) are 
indistinguishable. 

6. T H E  G R I F F I T H S  F O R M U L A  IN T H E  CASE W H E N  T H E  C R A C K  B R A N C H E S  

We will consider problem (4.11)-(4.13) under assumptions (5.3), corresponding to the deformation 
potential energy functional (we use the Betti identity (1.8)) 

U = E - A = -2-1A (6.1) 

A =  ~Fudx+ I Guds+ I Hudx! (6.2) 

Here E is the elastic energy and A is the work of external forces. 
We will suppose that as a result of fracture the crack has acquired N branches, making angles On with 

thex 1 axis. The case N = 1 is not excluded. Let the lengths of the branches be h n = hl n and let the quantifies 
11 . . . . .  In be comparable with the characteristic length of the domain ~;  h > 0 is a small parameter. We 
will study the asymptotic behaviour of the solution of problem (4.11)-(4.13) in the singularly perturbed 
domain D~, which contains a crack with branches. We will assume that their sides are stress-free, and 
the loading {F, G, H} is the same as before. We will denote the functionals of (6.1), found by solving 
the problem in f~h, by Uh, Eh, Ah. We introduce the "fast" variables ~ by Eqs (5.21). After the change to 
h = 0, the region ~h, written using coordinates (5.21), transforms to the composite plane co = to+ t.J ¢0_, 
weakened by a semi-infinite cut A_ and the cracks An = {~: ~0 - On, p e [0,/n]} coming from its tip; here 
(p, ~p) are polar coordinates, p = I ~ I = h -lr. With the branch An, we will associate Cartesian coordinates 
~n and polar coordinates (Pn, ~°n) with centre at its end P~ = (In cos On, l sin 00); ~0n ~ (-n,  it); ~'l = Pn 
cos 9n, ~ = On sin q~n. Finally, x ~ = (cos On, sin On) and xnVg = cos 0n0 2 = 010~q. 

Intending to apply the method of matched asymptotic expansions (el. [21, 31-33], etc.), we will describe 
a number of special solutions of the limiting problems in f~ and to. Weight functions which are singular 
solutions of the homogeneous problem (4.11)--(4.13) 

~j = m~lOiuj + ~jo (6.3) 

have already been introduced ([19, 23, 34], see also [21, 25, Section 4.3]). Here U i is taken from (5.12), 
and t ° E W~(~) 3 is the regular part of ~i. 

Using the Betti identity and formulae (5.7), (5.10) and (5.17), we obtain the well-known integral 
representation of the SIF 

IF~  jdx+ ~ G~ jds+ I n ;Jdx l  = 

tqt ~ A+nf l  

=-Q(u, t~J;r)=-Qli  ~ K~U~,mjtatUJ;F)= Kj (6.4) 

-Q(U j, a t u k; r )  = Q(O I u k, u j; F) = mjSj. k (6.5) 

The analogous singular solutions of the problem in to are the vectors 

3 
n J (I~) = U j (F~) + .qjO(F~) = U j (~) + Y. Njkm'~lalU k (~) + Q(p-I ), p _.~ ** (6.6) 

k=l 

In (6.6) 01 = a/o~l, and the real 3 x 3 matrix N = (Nik) is symmetric and positive definite, since it is a 
Gram matrix 

E(llJO,11kO ;to) = ~ (~(V)(llJ°)'Qk°ds = ~ (~(V)(llJ°)~kds = 

(6.7) 
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We now perform the matching procedure. It is convenient to use the 3 x 3 matrices U, ~, I] with columns 
U', g', rl' and also m and O. We will take the basic term of the outer series (far from the tip O) of the 
solution u h of the singularly perturbed problem as the solution u e W2a(f~) 3 of problem (4.10)-(4.13). 
Using (5.21), we rewrite (5.11) in the form 

u(x) = c + U(x)K + O(r) = c + h~U(~)O-I K + O(hp) (6.8) 

The principal terms of the inner series, which cater for the same vector function u h near the point 
O and use scale ~, as p = I ~ ] ~ oo necessarily behave in agreement with the asymptotic terms on the 
right of (6.8). Thus it is reasonable to start this series with the sum 

c + h~rl(~)O-JK (6.9) 

By virtue of (6.6) it can be represented as 

c + h~[U(~)+-~ (~)m-' N]O-' K + O(h~p -' ) (6.10) 

Applying (5.21), with h, ~ replaced by h -1, x, we return to the slow Variables x and instead of (6.10) 
obtain the new representation 

c + U(x)K + h ~xl (X)Om-I N O-J K + O(hNP-~) (6.11) 

The first two terms of  (6.11) appear in the middle of (6.8), and the third fixes the behaviour, near the 
tip, of the coefficient o fh  in the outer series. As already mentioned, the matrices O and m -a commute, 
that is, the third term in (6.11) is equal to 

he31U(x) m-IONO"~ K (6.12) 

Now recalling the weight functions (6.4), which possess the same singularities as (6.14), we improve 
the accuracy of the outer series with the second term 

u(x) + h ~(x) ON O-IK (6.13) 

Higher-order corrections are unnecessary in either series (6.9) or (6.13). 
The residues in the asymptotic form are found in the usual way ([33, Ch. 5] and [21, Section 6.5]), 

but after that, only the error of the approximate formula for the energy increment is indicated below 

AU = Uh - U = -2-1(Ah - A) = 

= -  l--- S F(uh - u ) d x - l  S G(uh-u)  ds-1-- S n(uh - u )  dx, (6.14) 
2, fa 2 ~fl 2 A+r",~ 

Since the sum (6.13) approaches u h far from O, using it to replace u h in (6.14) and taking (6.4) into 
account, we arrive at the require result 

AU = -2  -I hKtON 0 -I K + O(h ~)  (6.15) 

7. T H E  G R I F F I T H S  F O R M U L A E  R E W R I T T E N  

Even if y = 0, when O is the identity matrix, relation (6.15) is unsatisfactory owing to the presence 
of  the matrixN. It would be better if the form of (6.15) involved quantities for which there is a physical 
interpretation. 

jn Each of  the branch-cracks A~ is associated with three PS U corresponding to CV on iR + 1/2, as 
well as the numbers ~'n and m('~!m(~! m(~! Furthermore, we have the representations 

3 
riP(k) =c p + ZK~]aU)a(~a)+O(p,,), p. --~ 0 (7.1) 

j--I 
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We will construct columns (K¢ n, K~ ~, K~n) ~, and use them to form the matrix K (n). As in Section 6, we 
introduce matrices U (n), m (n) and O (n). Then 

c + hJ~Tl(~) 0 -l K = c + h )~U (n)(~") Ktn)O-t K + O(h~Jp.) (7.2) 

Since approximation (6.9) holds for the neiehbourhood of the point O which the cracks An reach, from 
(7.2) and (5.21) we see that the column K(n~(h) containing the SIF of the field u h at the tip pn, is given 
by the relation 

K(n)(h) ffi Ofn)K(n)O-IK + O(h ~j) (7.3) 

The residual term in (7.3) can be estimated as described in the proof of Theorem 7.2.7 in [21]. 
We will now find a relation between the matrices N and K (1), . . . ,  K (~, using the invariant integral 

[29, 35, 36] 

J, (u;r)  = ~{W(u.u;x) x v ( x ) -  o (v)(u;x) n3,u(x)}ds = 2 -~ Q( rO ,u. u; r )  
r 

(7.4) 

Replacingx and r in (7.4) by ~ and p, substituting the vector (6.11) for u, we choose the arc r to start 
on the upper side of the cut A, to include all the branches A1 . . . . .  A~, and ending on its lower side. We 
have 

p~pp =~V~ =(l.x" +~")V{ =l. ~--~-+ p. 3P. (7.5) 

The differential expression P~3/~Pn does not strengthen the singularity in (7.1) and so, replacing 
integration over F by integration over the circles S~ with centres pn and radii 8 > 0, we let 5 tend to 
zero and, using (7.5), (5.11) and (8.3), obtain 

t 

N N 
= I ~, lnK,OK(n)tmfn)K(n)O_lK = 1 ~ inKtOK(n)tOfn)tm(n)O(n)K(n)O_iK = 

'~ n=l "2" n=l 

I'v ~4) 
= -- ~InKtn)(h) t mfn)Ktn)(h) + O(h 
2 n=l (7.6) 

We will now find a different expression for the invariant integral. By direct verification we see that 

Q(P3p U j, ~1 uk; F) + Q(p~p~U ~, U k; F) = -m~Sj., 

Now, by virtue of (5.8), (4.4) and (7.7) 

2Jp(~O -t K; F) = -Q(p~}pUO -I K, a t Um -I NO -I K; F) - 

-Q(p~}p31Um-I NO-I K, U O-t K;F) = KtOmm-I NO-I K = KtONO-t K 

(7.7) 

(7.8) 

Comparing (7.6) and (7.8), we reduce formula (6.15) to the form 

A u = _ l h  ~t I n K (n) (h)  t m (n) K (n)(h) + O(h ~ )  = 
2 n=L 

1 iv 3 . . . .  2 =--~h Ztn Zm}n'r)*'(h) +O(hN) 
n--I j=l 

(7.9) 

It should be noted that (7.9) includes the lengths of the branch-cracks, the SIF at their tips and the 
multipliers m(~! characterizing the material 2 and direction of crack propagation. The order (O(h)) of 



The interface crack in anisotropic bodies. Stress singularities and invariant integrals 463 

the remainder in the classical formula of Griffiths remains unchanged when Kj is replaced by Ki(h), 
after which it is no different in form from (7.9). Finally, by repeating the previous calculations with 
very slight changes it can be shown that 

A U  = J,(u* ;1") + O(h ~ )  

8. A P P E N D I X  

We will now fill up the gaps in the proofs of Sections 5 and 7 (formula (4.8) and inequalities mj > 0). Using the 
argument of Section 6 for the situation of Section 4 we have the PS U and V corresponding to CV ~, and l-Z, 
which are in 11 = {~, ~ C: 0 < Re ~, < 1}, with U ~ V. Conditions (4.6) hold. Consider the field u defined by formula 
(5.7) and the weight functions 

~u =adj+~u°,  ~v=~v+~V° (8.1) 

A singular perturbation of region f2 consists of the crack growth by an amount h, so that the region m is made up 
of half-planes l~  meeting along the ray A0 = {t: t l  = 0, ~2 > 1}. We introduce the Cartesian coordinates 

~0= (t 0. t0) = (t~ * 1, t2) (8.2) 

If 1 - ~, = ~. and V = V ~, U = U ~ (cf. (2.2)), then by changing from slow x to fast variables g we obtain 

VS(x)ffir ~* ~, (lnr)P~P¢-P(ep)=h~'*p 7"* ~ [inp+lnh]PW~-pop)= 
pffiO P '  = • 

x ~-k 

k=0 /¢" q=0 q" k=0 

. x 1 , x ~(Inh)JU~_j( t)  (8 .4)  UX(x) = r I' ~ --~(lnr)PO*-POp)= h* ~ . 
prO P. j=o 

Applying the matching procedure we find, from (4.7) and (8.3), (8.4), that the principal terms of the inner series 
must be taken to be 

wh(C) = ~vh ~'" ~, ±(lab) ~ V~-k(~°)+~uh~ ~. ±Onh)~U"-J(t°) (8.5) 
k=0 kl" j=O J! 

According to [37], from (8.2) we have 

w* (t °) = w h (t) + ~ wh (t) +-.. (8.6) 

The dots denote higher derivatives (with respect to tl) of the field IVY(t) or a residue o(p-1). We return in (8.6) to slow 
variablesx and, reading the transformations (8.3) in reverse order with further arrangement of ~1, we obtain the relation 

W h ( t  °) = cu U(x) + Cv V(x) + h[cu~=U(x) + CvOi V(x)] +... 

Using (8.1), we take out two terms of the outer expansion 

cu U(x) + cv V(x) + hIcu~ l U(x) + Cv~! V(x)] 

Then (4.8) is obtained simply by repeating calculations (6.4) and (6.14) 

A U  = -2-1hQ(cuOIU +Cv~I V, cuU +cvV;F)+o(h) = -hcucv +o(h) 

Let cu = 1, cv = 0 and U = K+U + + K_U- + KoLP. If the crack develops in a straight line, the special solutions 
(6.6) can be found explicitly: rl:(~) = U~(t°), x = 0, +. By (8.6) q~(t) = U~ + OlU~(~) + . . . .  That the matrix M 
(and therefore the matrix m) is positive definite follows from the formula 

AU h U u F  h 
~ x=0,± ~=0,± } 

+o(h)=- h Y. KoMoxKx+o(h) 
2 o',x=O.± 
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